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Introduction
The goal of the Quple project is to implement a common framework for applying quantum machine learning

algorithms to high energy physics analysis base on the google Cirq [1] and tensorflow quantum [4] libraries.

Specifically, a variational quantum classifier (VQC)[3] was developed for applications in binary classification

problems such as distinguishing signal and background even ts in high energy physics experiments.

The variational quantum classifier (VQC) is a hybrid quantum-classical algorithm that utilizes both quan-

tum and classical resources for solving classification problems. The VQC is a kind of quantum neural network

(QNN) where the model representation of the is based entirely on the quantum processor, with classical heuristics

participating only as optimizers for the trainable parameters of the quantum model [4].

More specifically, the VQC defines a quantum model f(x,θ) = 〈0|U †(x,θ)MU(x,θ) |0〉 as the expectation

value of some observable M with respect to a state prepared via the unitary operation U(x,θ) to the initial

state |0〉 = |0〉⊗n of the quantum computer with an n qubit register. Here U(x,θ) is a quantum circuit that

depends on the data input x and a set of parameters θ which can be seen as the weights in a neural network.

U(x,θ) can be written as a composition of a data encoding circuit S(x) and a variational circuit W (θ), i.e.

U(x,θ) = S(x)W (θ). The circuit is run multiple times and the measurement results are averaged to obtain the

expectation value. Optionally a classical activation function ψ may be used to map the results from f(x,θ) to the

predicted class label, i.e. y = ψ(f(x,θ)). The parameters θ are then trained in an iterative manner by a classical

optimizer to optimize over some cost function to obtain the best model.

The Quple project is made into a python library under the same name and the full source code can be found at

https://gitlab.cern.ch/clcheng/quple.

The next section is a summary of the code implemention of the various components developed by Quple.
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Code Implementation

Parameterized Quantum Circuit

A parameterized quantum circuit (PQC) [3] is the core building blocks of many quantum machine learning al-

gorithms. In particular, both the data encoding circuit and the variational circuit of a VQC can be implemented

as a parameterized quantum circuit. A quantum circuit consists of a system of qubits together with a sequence

of unitary operations (quantum gates) applied to the qubits which transform the quantum state of the system. A

quantum circuit is parameterized if it contains gate operations with undetermined parameter expressions. For

example, the gate operation Rx(θ) is the Pauli rotation on the qubit about the x-axis by an angle parameterized

by θ.

In Quple, the construction of parameterized quantum circuits is implemented by the ParameterizedCircuit

class based on the google Cirq library. It uses a specific quantum circuit design called the circuit-centric [8]

architecture which is composed of some L copies (called the circuit depth) of a primary circuit block. For a

quantum circuit with n qubits, each circuit block consists of a layer (called the rotation layer) of single qubit

gates applied to each qubit followed by a layer (called the entanglement layer) of two (or three) qubit gates to

entangle the qubits with a given connectivity (see section 2). It is a natural design that can be easily implemented

in actual quantum computers and its strongly entangling nature has various advantages including error mitigation,

the ability to efficiently represent the solution space of some machine learning tasks and to capture nontrivial

correlation in the quantum data.

A ParameterizedCircuit instance can be created by specifying the number of qubits n in the circuit, the single-

qubit quantum gates used in the rotation layer, the multi-qubit quantum gates used in the entanglement layer and

the number of copies these layers appear in the circuit. Symbolic parameters are implemented as sympy.Symbol

objects from sympy library which will be automatically filled to the quantum gates in each layer. The symbolic

parameters have a common prefix, such as θ, followed by a numeric suffix indicating the order of creation of

the symbols. For example, a parameterized circuit with a single layer of Rx(θ) rotation on 3 qubits with have

parameterized symbols θ0, θ1 and θ2 representing the rotation angles about the x-axis for the first, second and

third qubit respectively. The symbolic parameters can then be resolved by specifying a symbol-to-value map or

an array of values which will be interpreted as the values of the sorted list of symbols in a given circuit. The

sorting of symbols are done according to a natural sorting method, e.g. θ1 < θ2 < θ10. The following code

snippet demonstrates how to create a paraterized circuit using ParameterizedCircuit and resolve the parameter
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values in the circuit.

from quple import ParameterizedCircuit
import numpy as np

circuit = ParameterizedCircuit(n_qubit=4, rotation_blocks=['RX','RY'], entanglement_blocks=['ZZ'],
entangle_strategy='full', copies=1)

num_params = len(circuit.parameters)
parameter_values = np.linspace(0, 0.01*np.pi*(num_params-1), num_params)
resolved_circuit = circuit.resolve_parameters(parameter_values)

The resulting circuits are shown in Figure 1.

(0, 0) Rx(θ0) Ry(θ4) ZZ ZZ ZZ

(0, 1) Rx(θ1) Ry(θ5) ZZˆθ8 ZZ ZZ

(0, 2) Rx(θ2) Ry(θ6) ZZˆθ9 ZZˆθ11 ZZ

(0, 3) Rx(θ3) Ry(θ7) ZZˆθ10 ZZˆθ12 ZZˆθ13

(0, 0) Rx(0) Ry(0.04π) ZZ ZZ ZZ

(0, 1) Rx(0.01π) Ry(0.05π) ZZˆ0.08π ZZ ZZ

(0, 2) Rx(0.02π) Ry(0.06π) ZZˆ0.09π ZZˆ0.11π ZZ

(0, 3) Rx(0.03π) Ry(0.07π) ZZˆ0.10π ZZˆ0.12π ZZˆ0.13π

Figure 1: (Top) A parameterized quantum circuit consisting of a single-qubitRx(θ) andRy(θ) rotation layer and a
fully connected two-qubit ZZθ entanglement layer. The two-qubit Ising coupling gate ZZθ = exp(−iπθZ ⊗ Z)
represents a rescaled rotation around the ZZ axis in the two-qubit bloch sphere. (Bottom) A resolved version of
the parameterized quantum circuit with θk = 0.01kπ for k = 0 . . . 13.

A Colab example notebook for the construction of parameterised quantum circuits can be found at

examples/Parameterized Circuits Walkthrough.ipynb
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Interaction Graph

An interaction graph determines how the qubits in a quantum circuit are connected by a specific gate operation. In

the circuit centric architecture, all qubits must be touched by the gate operation at least once. If the gate operation

acts on m qubits for a circuit with n qubits then an interaction graph for that gate operation will consist of a

collection of distinct m-tuple of qubits created from the n circuit qubits. The most common use cases for an

interaction graph is to determine how qubits are entangled by a two-qubit gate operation.

The interaction graph category implemented by Quple are: nearest neighbor (or linear ), cyclic (or circular ),

star and fully connected (or simply full ). In the nearest neighbor interaction, each qubit is connected to its

next nearest neighbor in a linear manner. In the cyclic interaction, each qubit is connected to its next nearest

neighbor in a circular manner. In the star interaction, the first qubit is connected to every other qubit. In the

fully connected interaction, every distinct ordered tuple of m qubits are connected. The following code snippet

shows the resultant interation graphs created from each of the above categories for a circuit with n = 4 qubits and

a gate operation acting on m = 2 qubits.

from quple.components.interaction_graphs import nearest_neighbor, cyclic, star, fully_connected

print(nearest_neighbor(n=4, m=2))
# output: [(0, 1), (1, 2), (2, 3)]
print(cyclic(n=4, m=2))
# output: [(0, 1), (1, 2), (2, 3), (3, 0)]
print(fully_connected(n=4, m=2))
# output: [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]
print(star(n=4, m=2) )
# output: [(0, 1), (0, 2), (0, 3)]

A practical use of interaction graphs is in the construction of the entanglement layer of ParameterizedCircuit

in which case the interaction graphs are passed as the entangle strategy argument. The following code snip-

pet shows the construction of various ParameterizedCircuit instances with a CNOT entanglement layer using

different entangle strategies.

from quple import ParameterizedCircuit

A = ParameterizedCircuit(n_qubit=4, entanglement_blocks=['CNOT'], entangle_strategy='linear')
B = ParameterizedCircuit(n_qubit=4, entanglement_blocks=['CNOT'], entangle_strategy='circular')
C = ParameterizedCircuit(n_qubit=4, entanglement_blocks=['CNOT'], entangle_strategy='star')
D = ParameterizedCircuit(n_qubit=4, entanglement_blocks=['CNOT'], entangle_strategy='full')

The resulting circuits are shown in Figure 2.

Users can also create their own interaction graph which takes the argument of n = number of qubits in the

circuit and m = number of qubits acted on by the gate operation and output a list containing tuples with size m.
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(0, 0) •
(0, 1) •

(0, 2) •

(0, 3)

(A)

(0, 0) •

(0, 1) •

(0, 2) •

(0, 3) •

(B)

(0, 0) • • •
(0, 1)

(0, 2)

(0, 3)

(C)

(0, 0) • • •
(0, 1) • •

(0, 2) •

(0, 3)

(D)

Figure 2: Quantum circuits of 4 qubits with a CNOT entanglement layer constructed with (A) linear, (B) circular,
(C) star and (D) full connectivity.

A Colab example notebook for the usage of interaction graphs can be found at

examples/Interaction Graphs Walkthrough.ipynb

Encoding Circuit

A data encoding circuit is a quantum circuit for the encoding of classical data into the quantum state of the circuit

qubits. It can be interpreted as a feature map x → Uφ(x)|0〉⊗n to the Hilbert space of n qubits, where φ is an

encoding function which transforms the data vector into the circuit parameters. Specifically, Uφ(x) is implemented

as a series of unitary gate operations in the quantum circuit. There are several ways to encode data into qubits and

each one provides different expressive power to the original data.

As a system of n qubits will have a quantum state that spans a 2n dimensional Hilbert space, it is desirable to

harness this quantum property to embed classical data into a higher dimensional feature space where a specific

problem may be easier to solve. In particular, Quple implements a data encoding scheme in which the number of

qubits matches the dimension of the data vector. This is in contract to the amplitude encoding method in which a

feature map ecnodes a 2n dimensional data vector into the quantum states of n qubits.

In Quple, the construtcion of an encoding circuit is implemented by the EncodingCircuit class. Specifically,

the derived class GeneralPauliEncoding creates an encoding circuit consisting of layers of unitary operators of

the form exp(iψ(x)Σ)H×n where ψ is a data encoding function, Σ is a generalized Pauli operator from the general

Pauli group Gn which is an n-fold tensor product of Pauli operators on n qubits, and x = (x1, . . . , xn) are the

input features to be encoded. Layers of Pauli operators may be repeated several times (called the circuit depth)

to the increase frequency spectrum of the final quantum state and thereby the expressivity of a quantum model

equipped with the encoding circuit.

To encode data of feature dimension n, a set of general Pauli operators are chosen to encode the data into an

n qubit circuit. Each Pauli operator will contribute to a unitary operation exp
(
i
∑

s∈S ψs(xs)Σs

)
where s is the
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indices of a subset of all qubit indices S. For a general Pauli operator of order k, s is a tuple of k elements.

For example Suppose the Pauli operator Σ = Z is used, then S is the set {1, 2, . . . , n} and the unitary

operation is exp
(
i
∑n

j=1 ψj(xj)Zj

)
H×n, where Zj is the Pauli Z operator acting on the j-th qubit. The following

code snippet shows how to construct an encoding circuit with GeneralPauliEncoding to encode data vector of

feature dimension 3 using the Pauli operator Σ = Z with circuit depth 2.

from quple.data_encoding import GeneralPauliEncoding

cirquit = GeneralPauliEncoding(feature_dimension=3, paulis=['Z'], copies=2)

The encoding circuit created from the above code snippet is shown in Figure 3.

(0, 0) H Rz(πx0) H Rz(πx0)

(0, 1) H Rz(πx1) H Rz(πx1)

(0, 2) H Rz(πx2) H Rz(πx2)

Figure 3: An encoding circuit constructed from GeneralPauliEncoding to encode data vector of feature dimen-
sion 3 using the Pauli operators Z with circuit depth 2.

If instead the Pauli Operator Σ = Z ⊗ Z is used, then S is a set of 2-tuple of qubit indices determined by

the interaction graph. For a fully connected graph, S is the set of combinations of 2-qubit pairs. Then the unitary

operation is exp
(
i
∑

s=(j,k)∈S ψj,k(xj, xk)Zj × Zk
)
H⊗n. The following code snippet shows how to construct

an encoding circuit with GeneralPauliEncoding to encode data vector of feature dimension 3 using the Pauli

operators Z and ZZ with circuit depth 1 with linear entanglement.

from quple.data_encoding import GeneralPauliEncoding

cirquit = GeneralPauliEncoding(feature_dimension=4, paulis=['Z','ZZ'], copies=1, entangle_strategy='linear')

The encoding circuit created from the above code snippet is shown in Figure 4.
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(0, 0) H Rz(πx0) • •

(0, 1) H Rz(πx1) Rz(πx0x1) • •

(0, 2) H Rz(πx2) Rz(πx1x2) • •

(0, 3) H Rz(πx3) Rz(πx2x3)

Figure 4: An encoding circuit constructed from GeneralPauliEncoding to encode data vector of feature dimen-
sion 3 using the Pauli operators Z and ZZ with circuit depth 1 with linear entanglement.

A Colab example notebook for the construction of data encoding circuits can be found at

examples/Encoding Circuit Walkthrough.ipynb

Encoding Function

An encoding function φ(x) specifies how input features x are encoded into the parameters of a unitary gate

operation in an encoding circuit. Usually, the parameters involved in a unitary gate operation are the rotation

angles about some axis of the single qubit or multi-qubit Bloch sphere depending on the number of qubits the gate

operation is acting on. Therefore, for input features of dimension n, the encoding function is a map f : Rn → R.

It is natural to restrict the range of the encoding function to be within (0, 2π) or (−π, π) to correspond to the

effective range of an angle of rotation.

In Quple, encoding circuits from the EncodingCircuit class will have its gate operations parameterized by

the expressions of the form πφ(x) with the π factor extracted out by default which restricts the range of φ(x) to

be within [0, 2] or [−1, 1]. There are a number of encoding functions that are implemented in Quple which also

put a restriction on the value of each input feature to be within [−1,+1] to make sure the encoding functions

will map input features of arbitrary dimension to a value of the required range. A table of the encoding functions

implemented in Quple is shown in Figure 1. Users can also create their own encoding function as long as it takes

an array like input x and output a number that is within the required range.
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Encoding Function Formula (n = 1) Formula (n > 1) Domain Range
self product x0

∏n
i=0 xi [-1, +1] [-1, +1]

cosine product x0
∏n

i=0(cos(π(xi + 1)/2)) [-1, +1] [1, +1]
distance measure x0

∏
i<j(xi − xj)/2pairs [-1, +1] [-1, +1]

one norm distance x0
∑

i<j |xi − xj|/pairs [-1, +1] [0, +2]
two norm distance x0 [

∑
i<j(xi − xj)2/pairs]1/2 [-1, +1] [0, +2]

arithmetic mean x0
∑n

i=0 xi/n [-1, +1] [-1, +1]
second moment x0 [

∑n
i=0(xi + 1)2/n]1/2 [-1, +1] [-1, +1]

cube sum x0
∑n

i=0 x
3
i /n [-1, +1] [-1, +1]

exponential square sum x0 2 exp[(
∑n

i=0 x
2
i /n)− 1] [-1, +1] [2 exp(−1), +2]

exponential cube sum x0 2 exp[(
∑n

i=0 x
3
i /n)− 1] [-1, +1] [2 exp(−2), +2]

Table 1: A table of encoding functions implemented by Quple.

The following code snippet shows how to construct an encoding circuit with GeneralPauliEncoding using

the Paulis Z and ZZ for encoding data of feature dimension 3 using the cube sum encoding function.

from quple.data_encoding.encoding_maps import cube_sum
from quple.data_encoding import GeneralPauliEncoding

encoding_circuit = GeneralPauliEncoding(feature_dimension=3, paulis=['Z', 'ZZ'],
encoding_map=cube_sum, entangle_strategy='linear', copies=1)

The encoding circuit created from the above code snippet is shown is Figure 5.

(0, 0) H Rz(πx0) • •

(0, 1) H Rz(πx1) Rz(πx30/2 + x31/2) • •

(0, 2) H Rz(πx2) Rz(πx31/2 + x32/2)

Figure 5: The GeneralPauliEncoding circuit with the Paulis Z and ZZ for encoding data of feature dimension 3
using the cube sum encoding function

A Colab example notebook for the usage of encoding functions can be found at

examples/Encoding Function Walkthrough.ipynb

Variational Circuit

A variational (or model) circuit is a parameterized quantum circuit representing a unitary U(θ) parameterized by

a set of free parameters θ which are treated as the weights in a machine learing model. The variational circuit

implemented by Quple is based on a circuit-centric design [8]. In this architecture, a variational circuit of n qubits
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is composed of L copies (i.e. the circuit depth) of a primary circuit block. Each circuit block consists of a layer

of single qubit gates (the rotation layer) applied to each of the qubits, followed by a layer of two qubit gates (the

entanglement layer) to entangle all qubits according to a given interaction graph. A final rotation layer is added

to the circuit so that measurement on any of the data qubits will effectively include the effect of all the two qubit

gates in the entanglement layer. It is an example of a strongly entangling circuit which has the advantage of

capturing correlations between the data features at all ranges for a short range circuit.

Currently, Quple has implemented four variational circuit design: RealAmplitudes , EfficientSU2 , ExcitationPreserving

and IsingCoupling . The first three designs are based on the implementation from the Qiskit [2] library.

The RealAmplitudes circuit consists of a layer of single qubit Pauli Y rotations acting on each qubit followed

by a layer of CNOT entanglement on pairs of qubits under a given interaction graph. The resultant quantum state

from the RealAmplitudes circuit will only have real amplitudes with zero complex part. It is a hardware efficient

circuit as it uses entangling interactions that are naturally available on hardware and do not require compilation.

The following code snippet shows how to construct a RealAmplitudes circuit with linear entanglement and circuit

depth 2.

from quple.circuits.variational_circuits import RealAmplitudes

circuit = RealAmplitudes(n_qubit=4, copies=2, entangle_strategy='linear')

The variational circuit created from the above code snippet is shown in Figure 6.

(0, 0) Ry(θ0) • Ry(θ4) • Ry(θ8)

(0, 1) Ry(θ1) • Ry(θ5) • Ry(θ9)

(0, 2) Ry(θ2) • Ry(θ6) • Ry(θ10)

(0, 3) Ry(θ3) Ry(θ7) Ry(θ11)

Figure 6: The RealAmplitudes variational circuit with linear entanglement and circuit depth 2.

The EfficientSU2 circuit consists of a layer of single qubit operations spanned by SU(2) (such as the Pauli

X, Y and Y operations and their rotations) acting on each qubit and a layer of CNOT entanglement on pairs of

qubits under a given interaction graph. It is a hardware efficient circuit as it uses entangling interactions that

are naturally available on hardware and do not require compilation. The following code snippet shows how to

construct an EfficientSU2 circuit with linear entanglement and circuit depth 2.
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from quple.circuits.variational_circuits import EfficientSU2

circuit = EfficientSU2(n_qubit=4, copies=2, entangle_strategy='linear')

The variational circuit created from the above code snippet is shown in Figure 7.

(0, 0) Ry(θ0) Rz(θ4) • Ry(θ8) Rz(θ12) • Ry(θ16) Rz(θ20)

(0, 1) Ry(θ1) Rz(θ5) • Ry(θ9) Rz(θ13) • Ry(θ17) Rz(θ21)

(0, 2) Ry(θ2) Rz(θ6) • Ry(θ10) Rz(θ14) • Ry(θ18) Rz(θ22)

(0, 3) Ry(θ3) Rz(θ7) Ry(θ11) Rz(θ15) Ry(θ19) Rz(θ23)

Figure 7: The EfficientSU2 variational circuit with linear entanglement and circuit depth 2.

The ExcitationPreserving circuit consists of a layer of single qubit Pauli Z rotation acting on each qubit and

a layer of two qubit gates from the Fermionic simulation, or fSim, gate set acting on pairs of qubits under a given

interaction graph. Under this gate set, the σXσX and σY σY couplings between the qubits have equal coefficients

which conserves the number of excitations of the qubits [6]. Algorithms performed with just Pauli Z rotations

and fSim gates enable error mitigation techiques including post selection and zero noise extrapolation [5]. The

following code snippet shows how to construct an ExcitationPreserving circuit with linear entanglement and

circuit depth 1.

from quple.circuits.variational_circuits import ExcitationPreserving

circuit = ExcitationPreserving(n_qubit=4, copies=1, entangle_strategy='linear')

The variational circuit created from the above code snippet is shown in Figure 8.

(0, 0) Rz(θ0) iSwap Rz(θ7)

(0, 1) Rz(θ1) iSwapˆ(2θ4/π) iSwap Rz(θ8)

(0, 2) Rz(θ2) iSwapˆ(2θ5/π) iSwap Rz(θ9)

(0, 3) Rz(θ3) iSwapˆ(2θ6/π) Rz(θ10)

Figure 8: The ExcitationPreserving variational circuit with linear entanglement and circuit depth 1.
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The IsingCoupling circuit consists of a layer of single qubit Pauli rotations acting on each qubit and a layer

of two qubit XX Ising coupling gates which is a rotation around the XX axis in the two-qubit bloch sphere. The

following code snippet shows how to construct an IsingCoupling circuit with linear entanglement and circuit

depth 1.

from quple.circuits.variational_circuits import IsingCoupling

circuit = IsingCoupling(n_qubit=4, copies=1, entangle_strategy='linear')

The variational circuit created from the above code snippet is shown in Figure 9.

(0, 0) Ry(θ0) Rz(θ4) XX Ry(θ0) Rz(θ4)

(0, 1) Ry(θ1) Rz(θ5) XXˆ(θ8) XX Ry(θ1) Rz(θ5)

(0, 2) Ry(θ2) Rz(θ6) XXˆ(θ9) XX Ry(θ2) Rz(θ6)

(0, 3) Ry(θ3) Rz(θ7) XXˆ(θ10) Ry(θ3) Rz(θ7)

Figure 9: The IsingCoupling variational circuit with linear entanglement and circuit depth 1.

Users can also build their customized variational circuit based on the ParmaterisedCircuit class using the

circuit-centric design.

In addition, Quple has implemented the add readout method under the ParmaterisedCircuit class which

allows the addition of an extra readout qubit that is entangled to all data qubits via a custom two-qubit gate

operation which is used as the qubit for measurement when training a VQC model. The following code snippet

shows how to construct an EfficientSU2 circuit with linear entanglement, circuit depth 1 equipped with a readout

qubit that entangled to all data qubits via the two-qubit XXθ gate.

from quple.circuits.variational_circuits import EfficientSU2

circuit = EfficientSU2(n_qubit=5, copies=1, entangle_strategy='linear')
circuit.add_readout('XX')

The variational circuit created from the above code snippet is shown in Figure 7.
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(-1, -1) XX XX XX XX XX

(0, 0) Ry(θ0) Rz(θ5) • XXˆθ10

(0, 1) Ry(θ1) Rz(θ6) • XXˆθ11

(0, 2) Ry(θ2) Rz(θ7) • XXˆθ12

(0, 3) Ry(θ3) Rz(θ8) • XXˆθ13

(0, 4) Ry(θ4) Rz(θ9) XXˆθ14

Figure 10: The EfficientSU2 variational circuit with linear entanglement and circuit depth 1. A readout qubit is
entangled to all data qubits via the two-qubit XXθ gate. The last rotation layer is not shown to save space.

A Colab example notebook for the construction of variational circuits can be found at

examples/Variational Circuits Walkthrough.ipynb

Variational Quantum Classifier

In Quple, the variational quantum classifier is implemented as the quple.classifiers.VQC class. It is derived from

the tf.keras.Sequential model defined by an input layer consisting of the data encoding circuit, a tfq.layers.PQC

layer consisting of the variational circuit and a final output layer with a custom activation function. The output

layer is a classical dense layer with non-trainable weights and only serves to transform the expectation value

from the variational circuit measurement. Users can specify the activation function used in the output layer, the

optimizer (which should be an instance of tf.keras.Optimizer object) for updating the model weights, the loss

function and the metrics in a similar manner as a tensorflow keras model. The following code snippet shows how

to construct an VQC model using the GeneralPauliEncoding encoding circuit and the EfficientSU2 variational

circuit.

import tensorflow as tf
from quple.data_encoding import GeneralPauliEncoding
from quple.circuits.variational_circuits import EfficientSU2
from quple.classifiers import VQC

n_qubit = 5
encoding_circuit = GeneralPauliEncoding(n_qubit, paulis='Z', copies = 2)
variational_circuit = EfficientSU2(n_qubit, copies=2, entangle_strategy='full')

variational_circuit.add_readout('XX')

vqc = VQC(encoding_circuit, variational_circuit, activation='sigmoid',
optimizer=tf.keras.optimizers.Adam(),
metrics=['binary_accuracy'], loss='mse',
readout=[variational_circuit.readout_measurement()])
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Quple also provides the quple.components.data preparation import prepare train val test method for split-

ting a dataset into the training, validation and test datasets and carry out data preprocessing using the sklearn [7]

libraries. The following code snippet shows how to preprocess a given dataset and train the VQC model using the

preprocessed dataset.

import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.decomposition import PCA

n_qubit = 5
n_event = 100
batch_size = 64
epochs = 100

# load input data
x, y = np.load('data.npy')

# preprocess input data:
# 1. Apply pca to reduce dimension of data vector to match the number of qubits
# 2. Apply MinMaxScaler to restrict data to the range [-1, +1]
reprocessors = [PCA(n_components=n_qubit), MinMaxScaler((-1,1))]
x_train, x_val, x_test, y_train, y_val, y_test = prepare_train_val_test(

x, y, train_size=n_event, val_size=n_event, test_size=n_event,
preprocessors=preprocessors, stratify=y)

# train the vqc model
vqc.fit(x_train, y_train, x_val, y_val, x_test, y_test,

batch_size=batch_size, epochs=epochs)

A Colab example notebook for the construction of VQC models can be found at

examples/Variational Quantum Classifier Walkthrough.ipynb

Circuit Descriptors

In designing the suitable data encoding circuit and variational circuit for a VQC model, it is important to have some

quantitative description about certain properties of the circuit to serve as indicators for the potential performance

of a VQC constructed built upon these circuits. To this mean, Quple has implemented two circuit descriptors,

namely expressibility and entangling capability, according to []. They are applicable to a QuantumCircuit object

which contain parameterized gate operations.

A data encoding circuit is deemed good if it can well preserve the features in the original data and a good

variational circuit should be able to well represent the solution space while maintaining a low circuit depth and

number of parameters. In both cases, a circuit with the ability to generate states that are well representative of the

Hilbert space is needed and this property is characterised by the expressibility of a circuit. The quantity can be

expressed as the Kullback–Leibler divergence between the sampled state fidelity distribution of the parameterized

circuit and the distribution of state fidelities generated by a parameterized circuit using that of Haar random states.
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In the context of variational algorithms, potential advantages of generating highly entangled states with low-

depth circuits include the ability to efficiently represent the solution space for data classification, and to capture

nontrivial correlation in the quantum data. This is where the entangling capability of a circuit come in to play. The

quantity can be expressed as the average Meyer Wallach measure of the sampled final states of the parameterized

circuit.

The following code snippet demonstrates some examples how to calculate the expressibility and entangling

capability of various parameterized circuits.

from quple.circuits.variational_circuits import ExcitationPreserving, RealAmplitudes, EfficientSU2
from quple.data_encoding import GeneralPauliEncoding
from quple import circuit_fidelity_plot, circuit_entangling_measure, circuit_expressibility_measure

A = GeneralPauliEncoding(feature_dimension=4, copies=2, paulis=['Z'])
B = GeneralPauliEncoding(feature_dimension=4, copies=2, paulis=['Z', 'ZZ'],

entangle_strategy='linear')
C = RealAmplitudes(n_qubit=4, copies=2, entangle_strategy='linear')
D = EfficientSU2(n_qubit=4, copies=2, entangle_strategy='linear')

# Calculate the expressibility measure for each of the circuits
print(circuit_expressibility_measure(A, samples=3000))
# output: 0.9377672194574366
print(circuit_expressibility_measure(B, samples=3000))
# output: 0.06422864349728435
print(circuit_expressibility_measure(C, samples=3000))
# output: 0.1825387273863395
print(circuit_expressibility_measure(D, samples=3000))
# output: 0.011474480876725163

# Calculate the entangling measure for each of the circuits
print(circuit_entangling_measure(A, samples=3000))
# output: 2.971446059546891e-15
print(circuit_entangling_measure(B, samples=3000))
# output: 0.4816055124378446
print(circuit_entangling_measure(C, samples=3000))
# output: 0.5585023165647457
print(circuit_entangling_measure(D, samples=3000))
# output: 0.7089928898427679

plot_A = circuit_fidelity_plot(A, samples=3000, bins=100)
plot_B = circuit_fidelity_plot(B, samples=3000, bins=100)
plot_C = circuit_fidelity_plot(C, samples=3000, bins=100)
plot_D = circuit_fidelity_plot(E, samples=3000, bins=100)

The plots of fidelity distributions of the parameterized circuits defined above in comparison to that of the Haar

random states are shown in Figure 11.
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(A) (B)

(C) (D)

Figure 11: Plots of fidelity distributions of various parameterized quantum circuits. The distribution in orange is
the fidelity distribution sampled from (A) the GeneralPauliEncoding circuit of 4 qubits and circuit depth 2 using
Pauli string ’Z’, (B) the GeneralPauliEncoding circuit of 4 qubits and circuit depth 2 using Pauli strings ’Z’
and ’ZZ’ with linear entanglement, (C) the RealAmplitudes circuit of 4 qubssits and circuit depth 2 with linear
entanglement and (D) the RealAmplitudes circuit of 4 qubits and circuit depth 2 with linear entanglement. The
distribution in blue is the fidelity distribution sampled from the Haar random states. HereDKL is the expressibility
evaluated for the parameterized quantum circuit.

A Colab example notebook for the usage of circuit descriptors can be found at

examples/Circuit Descriptors Walkthrough.ipynb

Application to High Energy Physics
The variational quantum classifier (VQC) implemented by the Quple library was tested on two of the Large

Hadron Collider (LHC) high energy physics experiments, namely the H → µ+µ− and ttH Higgs boson decay

channels. The main goal of the classifier is to distinguish between signal and background events based on the

kinematic variables of a collision event. The dataset for each of the experiments is preprocessed to reduce the

feature dimension of each data point to suit the number of qubits used by the quantum classifier using the method

of principal component anylsis (PCA). The performance of the VQC will be compared with common classical

machine learning algorithms, namely the classical neural netowrk, the classical support vector machine (SVM)
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and the classical boost decision tree (BDT) based on the same dataset with reduced feature dimension. The input

data used in the VQC is additionaly rescaled to the range of [-1, +1] to fit the requirement of the data encoding

circuit.

In both tests, the VQC model is configured with 5, 7 and 10 qubits corresponding to input data with feature

dimension of 5, 7 and 10 respectively. The encoding circuit used is the GeneralPauliEncoding circuit with Pauli

string ‘Z’ and self product as the encoding function. The variational circuit used is the EfficientSU2 circuit with

a readout qubit entangled to all input qubits via an XX parity gate operation raised to a parameterized power.

A Pauli Z operator is acted on the readout qubit as measurement. An additional sigmoid activation function is

applied to the output epecteation value from the readout qubit measurement. The Adam optimizer implemented

by tensorflow Keras is used as the classical optimizer for tuning the parameters of the variational circuit during

the training. An example Quple code for constructing the VQC model is shown below.

import tensorflow as tf
from quple.data_encoding import GeneralPauliEncoding
from quple.circuits.variational_circuits import EfficientSU2
from quple.classifiers import VQC

n_qubit = 5
n_event = 100
encoding_circuit = GeneralPauliEncoding(n_qubit, paulis='Z', copies = 2)
variational_circuit = EfficientSU2(n_qubit, copies=2, entangle_strategy='full')

variational_circuit.add_readout('XX')

vqc = VQC(encoding_circuit, variational_circuit, activation='sigmoid',
optimizer=tf.keras.optimizers.Adam(),
metrics=['binary_accuracy','AUC'], loss='mse',
readout=[variational_circuit.readout_measurement()])

For the classical classifiers, the model used for the classical neural network is implemented by the tensorflow

keras library and consists of two dense layers with 64 and 16 nodes each using the relu activation function and a

drop out rate of 0.1 and a final output layer with the sigmoid activation function. The models used for classical

SVM and classical BDT are implemented by the sklearn and the xgboost libraries respectively. Some degree

of hyperparameter tuning was performed on the classical SVM and classical BDT models only. Therefore, the

results are expected to favor the classical SVM and the classical BDT models.

To quantify the performance of each classifier model, the Receriver Operating Characteric (ROC) curves in

the plane of background rejection versus signal efficiency (i.e. true negative rate versus true negative rate) is used.

Each ROC curve is characterized by its area-under-curve (auc) value which ranges between 0 and 1 with a higher

value representing a better model. For each classifier model in each experiment, a total of 20 independent training

runs are carried out. In each run, a total of 3k events (with signal to background ratio of 1:1) are randomly drawn

from the dataset of a specific experiment with k = 100, 200, 400, 800, 1600. The 3k events are split equally into
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the training, validation and test datasets. Only the training and validation datasets are visible to the model during

training and the final model will be tested on the test dataset to obtain the predicted scores from which the true

positive rates and false positive rates are calculated. The average true positive rates and false negative rates are

then extrapolated from the 20 independent runs to obtain the average auc and its standard deviation.

Results from the two tests for the 5, 7 and 10 variable scenarios are shown in Figure 12, 13 and 14 respectively.

It is observed that the performance of the VQC model is generally worse than the classical models especially when

more qubits (variables) are used. This is partly due to the fact that the performance of the VQC model does not

scale up well with the number of qubits used and can become unstable at times. However, it should be noted that

the behaviour of a VQC model is highly dependent on the choice of the data encoding circuit and the variational

circuit. Therefore, the above results should only be taken as a proof of concept and does not represent the full

capability of the VQC.

The full results of the two tests are shown in Appendix Table and Table .

0.0 0.2 0.4 0.6 0.8 1.0
Signal Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Ba
ck
gr
ou
nd

 R
ej
ec
ti
on

Hmumu ROC Curve, 5 qubits, 1600 events
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ttH ROC Curve, 5 qubits, 1600 events

Quantum Variational Method, auc = 0.838 ± 0.012
Classical BDT, auc = 0.836 ± 0.013
Classical SVM, auc = 0.839 ± 0.010
Classical Neural Netowrk, auc = 0.829 ± 0.013

(b)

Figure 12: The ROC curves of the variational quantum classifier (red curves), the classical neural network (blue
curves), the classical SVM (yellow curves), and the classical BDT (green curves) using 5 variables for (a) H →
µ+µ− analysis with a dataset of 1600 events and (b) ttH analysis with a dataset of 1600 events.
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Hmumu ROC Curve, 7 qubits, 1600 events
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Classical Neural Netowrk, auc = 0.814 ± 0.016
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ttH ROC Curve, 7 qubits, 1600 events

Quantum Variational Method, auc = 0.823 ± 0.026
Classical BDT, auc = 0.865 ± 0.011
Classical SVM, auc = 0.869 ± 0.011
Classical Neural Netowrk, auc = 0.849 ± 0.013

(b)

Figure 13: The ROC curves of the variational quantum classifier (red curves), the classical neural network (blue
curves), the classical SVM (yellow curves), and the classical BDT (green curves) using 7 variables for (a) H →
µ+µ− analysis with a dataset of 1600 events and (b) ttH analysis with a dataset of 1600 events.
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Hmumu ROC Curve, 10 qubits, 1600 events

Quantum Variational Method, auc = 0.813 ± 0.049
Classical BDT, auc = 0.852 ± 0.010
Classical SVM, auc = 0.848 ± 0.007
Classical Neural Netowrk, auc = 0.827 ± 0.013
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ttH ROC Curve, 10 qubits, 1600 events

Quantum Variational Method, auc = 0.843 ± 0.013
Classical BDT, auc = 0.874 ± 0.009
Classical SVM, auc = 0.884 ± 0.009
Classical Neural Netowrk, auc = 0.857 ± 0.011

(b)

Figure 14: The ROC curves of the variational quantum classifier (red curves), the classical neural network (blue
curves), the classical SVM (yellow curves), and the classical BDT (green curves) using 10 variables for (a)
H → µ+µ− analysis with a dataset of 1600 events and (b) ttH analysis with a dataset of 1600 events.
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Conclusion
The Quple package has implemented various components for building quantum machine learning algorithms

based on the google Cirq and tensorflow quantum libraries. Some of the key components provided by Quple

include the QuantumCircuit class for the construction of a general quantum circuit, ParameterizedCircuit class

for the contruction of parameterized quantum circuit based on the circuit-centric design, various interaction maps

for specifying the qubit connectivity of a given gate operation, the EncodingCircuit class for the construction

of data encoding circuits, various data encoding functions (or feature maps) for mapping data vectors into the

parameters of a gate operation, the VQC class for the construction of a variational quantum classifier model

and various circuit descriptors for quantifying the properties of a parameterized circuit. Users can easily switch

between different choices of individual components to customize and build their own quantum machine learning

model. With Quple’s modular and extensible architecture, users are also welcomed to contribute to the framework

by providing new algorithms and components.

The variational quantum classifier implemented by Quple has been applied to two of the Large Hadron Collider

(LHC) high energy physics experiments, namely the H → µ+µ− and ttH Higgs boson decay channels. The

results show that the classifier model can successfully learn and perform classification task. More detailed analysis

is needed to explore the capability of the classifier.

Future plans for the Quple package include

1. the design of new variational circuits and data encoding circuits,

2. an interface for other popular quantum computing libraries such Qiskit and QuTip,

3. incorporation of noisy quantum simulation,

4. implementation of other quantum machine learning algorithms such as the quantum kernel method and

quantum neural netowrk.
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Appendix

N Variable N Event VQC auc SVM auc BDT auc NN auc

5 100 0.823±0.078 0.780±0.062 0.801±0.054 0.775±0.053

5 200 0.827±0.029 0.825±0.031 0.813±0.032 0.810±0.045

5 400 0.830±0.025 0.844±0.022 0.832±0.020 0.821±0.025

5 800 0.835±0.020 0.848±0.016 0.839±0.009 0.827±0.022

5 1600 0.835±0.018 0.852±0.012 0.842±0.017 0.826±0.017

7 100 0.830±0.042 0.769±0.059 0.757±0.059 0.741±0.058

7 200 0.827±0.036 0.809±0.035 0.807±0.036 0.791±0.038

7 400 0.825±0.037 0.827±0.028 0.826±0.022 0.794±0.029

7 800 0.846±0.012 0.836±0.014 0.830±0.016 0.810±0.019

7 1600 0.839±0.017 0.847±0.010 0.840±0.011 0.814±0.016

10 100 0.807±0.103 0.795±0.047 0.794±0.051 0.764±0.060

10 200 0.809±0.060 0.833±0.025 0.805±0.028 0.783±0.037

10 400 0.817±0.066 0.835±0.020 0.828±0.028 0.803±0.019

10 800 0.805±0.060 0.846±0.014 0.842±0.014 0.821±0.016

10 1600 0.813±0.049 0.848±0.007 0.852±0.010 0.827±0.013

Table 2: Summary of the VQC result on the H → µ+µ− Higgs boson decay channels of the LHC high energy
physics experiment.
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N Variable N Event VQC auc SVM auc BDT auc NN auc

5 100 0.779±0.075 0.795±0.043 0.768±0.053 0.776±0.069

5 200 0.780±0.047 0.808±0.036 0.794±0.031 0.795±0.046

5 400 0.820±0.025 0.818±0.020 0.806±0.020 0.810±0.023

5 800 0.812±0.026 0.835±0.016 0.820±0.019 0.817±0.019

5 1600 0.838±0.012 0.839±0.010 0.836±0.013 0.829±0.013

7 100 0.774±0.063 0.782±0.048 0.797±0.049 0.761±0.052

7 200 0.775±0.039 0.818±0.034 0.812±0.038 0.812±0.032

7 400 0.806±0.031 0.844±0.019 0.835±0.014 0.819±0.025

7 800 0.825±0.022 0.857±0.015 0.854±0.012 0.835±0.016

7 1600 0.823±0.026 0.869±0.011 0.865±0.011 0.849±0.013

10 100 0.756±0.082 0.806±0.037 0.798±0.055 0.780±0.053

10 200 0.807±0.041 0.834±0.028 0.828±0.029 0.800±0.034

10 400 0.818±0.033 0.851±0.021 0.848±0.018 0.835±0.023

10 800 0.829±0.020 0.868±0.013 0.863±0.015 0.842±0.013

10 1600 0.843±0.013 0.884±0.009 0.874±0.009 0.857±0.011

Table 3: Summary of the VQC result on the ttH Higgs boson decay channels of the LHC high energy physics
experiment.
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